DESCRIPTIVE MODEL OF VOLCANOGENIC U

By William C. Bagby

<u>DESCRIPTION</u> Uranium mineralization in epithermal veins composed of quartz, fluorite, and iron, arsenic, and molybdenum sulfides.

GENERAL REFERENCE Nash (1981).

GEOLOGICAL ENVIRONMENT

Rock Types High-silica alkali rhyolite and potash trachytes. Peralkaline and peraluminous rhyolite host ore.

Textures Porphyritic to aphyric vesicular flows and shallow intrusive rocks,

Age Range Precambrian to Tertiary.

<u>Depositional Environment</u> Subaerial to subaqueous volcanic complexes. Near-surface environment, association with shallow intrusive rocks is important.

Tectonic Setting(s) Continental rifts and associated calderas,

Associated Deposit Types Roll-front uranium in volcaniclastic sediments. Fluorite deposits.

DEPOSIT DESCRIPTION

<u>Mineralogy</u> Coffinite, uraninite, brannerite are most common uranium minerals. Other minerals include pyrite, realgar/orpiment, leucoxene, molybdenite, fluorite, quartz, adularia, and barite. Gold is present in some deposits. Deposits associated with alkaline complexes may contain bastnaesite.

Texture/Structure Open-space filling in breccias. Uraninite commonly encapsulated in silica.

Alteration Kaolinite, montmorillonite, and alunite are common. Silicification, accompanied by adularia affects wallrocks spatially most closely associated with ore.

 $\underline{\text{Ore Controls}}$ Through-going fractures and breccias formed along the margins of shallow intrusives. Vugs in surface flows are of minor importance.

<u>Weathering</u> Near-surface oxidation produces jordisite and a variety of secondary uranium minerals. Supergene uranium enrichment is generally not important.

<u>Geochemical Signature</u> Li and Hg are zoned away from the ore. High anomalous As, Sb, F, Mo ± W occur near and with the ore. Mo is deep, Hg is shallow. REE may be highly anomalous. Anomalously radioactive.

EXAMPLES

Marysvale, USUT (Kerr and others, 1957)
Aurora prospect, USOR (Roper and Wallace, 1981)
Rexspar, CNBC (Joubin and James, 1956)

GRADE AND TONNAGE MODEL OF VOLCANOGENIC U

By Dan L. Mosier

<u>COMMENTS</u> Only deposits with reported sizes greater than 1,000 tonnes are included. See figs. 124, 125.

DEPOSITS

Name	Country	<u>Name</u>	Country
Aurora Ben Lomond Bretz Buckhorn Coteje El Mezquite El Nopal (Nopal I) Henry district La Bajada Laguna Colorado Laguna del Cuervo	USOR AUQL USOR USNV BLVA MXCO MXCO USUT USNM AGTN MXCO	Los Puertos Lucky Lass Macusani Moonlight Nopal III Novazza Osamu Utsumi Petersen Mtn. Rexspar White King	MXCO USOR PERU USNV MXCO ITLY BRZL USCA CNBC USOR

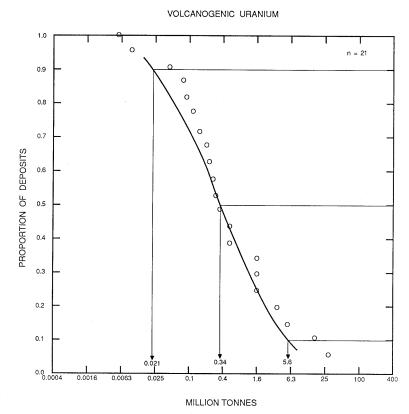


Figure 124. Tonnages of volcanogenic U deposits.

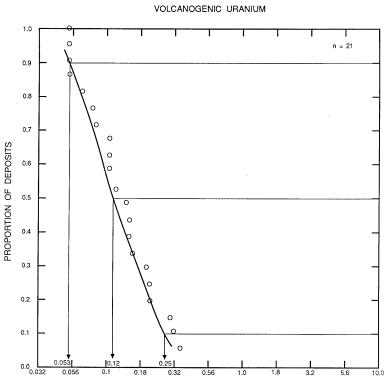


Figure 125. Uranium grades of volcanogenic U deposits.

URANIUM GRADE IN PERCENT $\mathrm{U_{3}O_{8}}$